

Geometry (Grades 11 & 12)

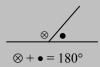
- Theorems
- Point of intersection theorems*
- Summary of reasons
- Method
- Proofs of theorems

Geometry theorems: Grades 8 & 9

Lines of intersection

Vertically opposite ∠s

∠s on a straight line



Revolution (∠s around point)

Parallel lines

Corresponding ∠s

Alternate ∠s

Co-interior ∠s

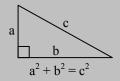
Triangles

Isosceles Δ

(∠s opposite equal sides)

Equilateral Δ : $\angle s = 60^{\circ}$

Right-angled Δ: (Pythagoras' theorem)



Sum of interior angles of $\Delta = 180^{\circ}$

Exterior \angle of Δ = sum of interior opposite \angle s

Conditions for congruence (≡)

- side, side, side
- ∠, ∠, side
- side, included ∠, side
- 90°, hypotenuse, side

Area, circumference and volume

- Area rectangle = base \times height
- Area $\Delta = \frac{1}{2}$ base $\times \perp$ height
- Area $O = \pi . r^2$
- Area trapezium = $\frac{1}{2}$ (sum of // sides) × height
- Circumference $O = 2\pi r$
- Volume (cylinder / prism)= base area × height

Geometry theorems: Grade 10

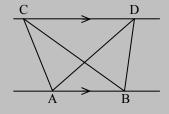
Quadrilaterals

• The sum of the interior \angle s of quadrilateral = 360°

Properties	Rectangle	Rhombus	Parm	Square	Kite	Trapezium	Quadrilateral
One pair of // sides	✓	✓	✓	✓		✓	
Two pairs of // sides	✓	✓	✓	✓			
∠s = 90°	✓			✓			
All sides equal		✓		✓			
Two pairs of adjacent sides equal		√		✓	√		
Diagonals equal	✓			✓			
Diagonals bisect each other	✓	✓	√	√			
Diagonals bisect each other rectangularly		✓		✓	✓		

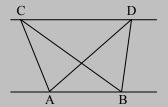
 $AB \parallel CD \implies Area \triangle ABC = Area \triangle ABD$

(same base & same // lines)



Area $\triangle ABC = Area \triangle ABD \implies AB \parallel CD$

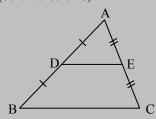
(same base & areas equal)



AD = DB & AE = EC

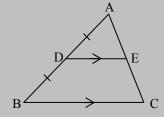
$$\Rightarrow$$
 BC | DE & DE = $\frac{1}{2}$ BC

(centre theorems)



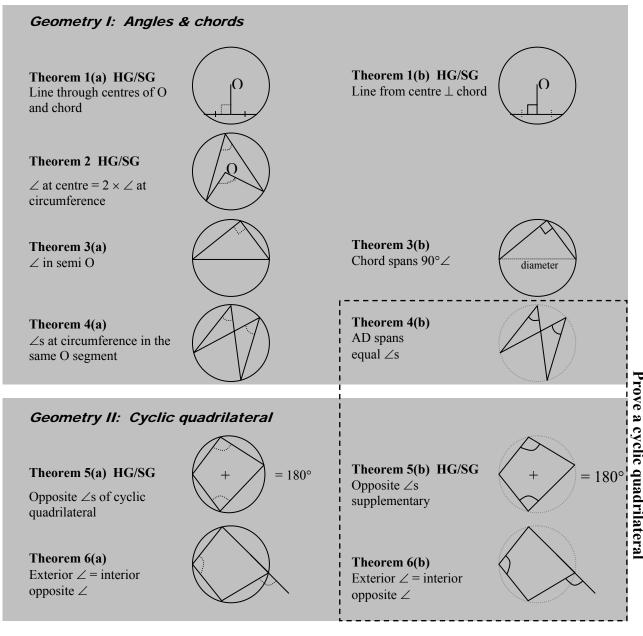
 $BC \parallel DE \& AD = DB \implies AE = EC$

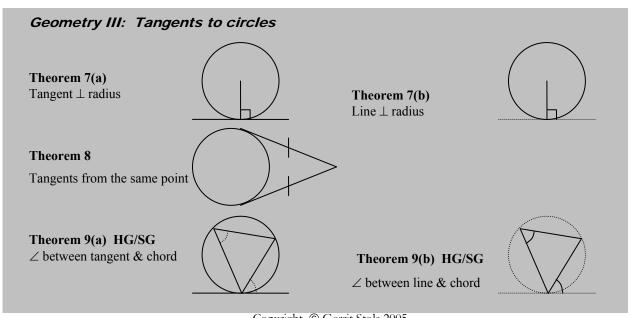
(line from centre & // lines)



Prove a cyclic quadrilateral

Geometry Theorems: Grade 11





Point of intersection theorems *

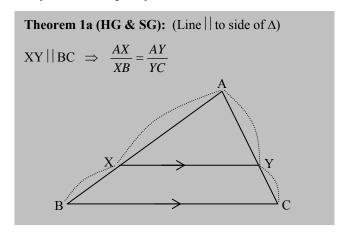
	Definition	Point of intersection	Sketch	Property
Median	A median is a line drawn from the vertex of a triangle to the centre of the opposite side.	Median point		Third splitting point of median
Altitude	An altitude of a triangle is a line drawn from the vertex of the triangle perpendicular to the opposite side.	Orthocentre		Divides Δ in 3 cyclic quadrilaterals
Perpendicular bisector	A perpendicular bisector of a line segment AB is a perpendicular line dividing the line segment AB.	Centre of circumcircle		Centre of circumcircle
Bisector of an angle	A bisector of an angle is a line halving the angle.	Centre of incircle		Centre of incircle

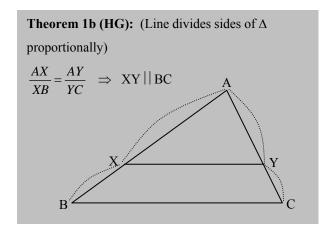
- **Theorem 10 *:** The medians of a triangle intersect at one point, namely the median point. (Medians of Δ)
- Theorem 11 *: The bisectors of the angles intersect at one point, namely the centre of the incircle.

 (Bisectors of \angle s of Δ)
- **Theorem 12 *:** The perpendicular bisectors of a triangle intersect at one point, namely the centre of the circumcircle. (Perpendicular bisectors of sides of Δ)
- **Theorem 13 *:** Altitudes of a triangle intersect at one point, namely the orthocentre. (Altitudes of Δ)

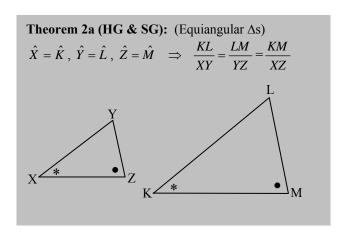
Geometry theorems: Grade 12

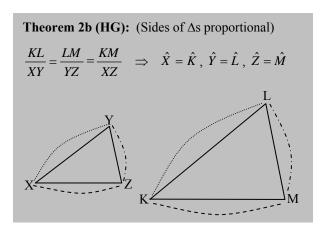
Proportionality & parallelism

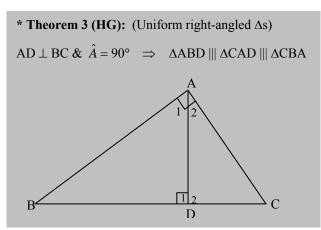




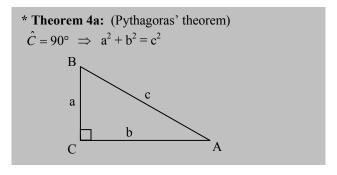
Proportionality & similarity

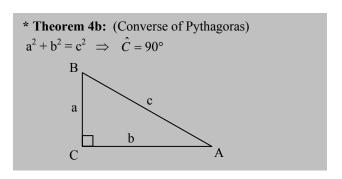






Pythagoras' theorem





Gr 8 &

Gr 10

Gr 11

Reasons for geometry theorems

Lines of Vertically opposite ∠s **intersection** ∠s on a straight line

Revolution (\(\section \) around point)

Triangles ∠s opposite equal sides

Equilateral Δ : \angle s = 60° Pythagoras' theorem Sum of interior angles of Δ

Exterior \angle of Δ

Parallelism Corresponding ∠s

Alternate ∠s
Co-interior ∠s

Congruence side, side, side

 \angle , \angle , side

side, included ∠, side 90°, hypotenuse, side

Area of Δ Same base & same // lines

Same base & areas equal

Centre theorem

Line from centre & // lines

Angles & chords

Theorem 1a: Line through centres of O and chord HG & SG Theorem 1b: Line from centre \perp chord HG Theorem 2: \angle at centre = $2 \times \angle$ at circumference HG & SG

Theorem 3a: \angle in semi O Theorem 3b: \angle Chord spans 90° \angle

Theorem 4a: ∠s at circumference in same O segment

Theorem 4b: AD spans equal \angle s

Cyclic quadrilaterals

Theorem 5a: Opposite ∠s of cyclic quadrilateral HG & SG
Theorem 5b: Opposite ∠s supplementary HG

Theorem 6a: Exterior \angle = interior opposite \angle Theorem 6b: Exterior \angle = interior opposite \angle

Tangents to circles

Theorem 7a: Tangent \perp radius Theorem 7b: Line \perp radius

Theorem 8: Tangents from the same point
Theorem 9a: ∠ between tangent & chord
Theorem 9b: ∠ between line & chord

HG & SG

HG

Point of intersection theorems (HG only)

Theorem 10: Medians of Δ intersect at 1 point Theorem 11: Bisectors of \angle s of Δ intersect at 1 point

Theorem 12: Perpendicular bisectors of sides of Δ intersect at 1 point

Theorem 13: Altitudes of Δ intersect at 1 point

Similarity and proportionality

Line | | to side of Δ HG & SG Theorem 1a: Theorem 1b: Line divides 2 sides of Δ proportionally HG Gr 12 HG & SG Theorem 2a: Equiangular Δs Sides of Δs proportional Theorem 2b: HG Uniform right-angled Δs Theorem 3: HG

Theorem 4a: Pythagoras

Method to solve problems

Step 1: Mark all given information on the sketch.

• Make parallel lines and tangent lines different colours.

Step 2: Expand on the given information.

• Centre of a circle \Rightarrow line from centre on chord

 \Rightarrow radius \perp tangent

 \Rightarrow isosceles \triangle with radii

 $\Rightarrow \angle$ at centre = 2 $\times \angle$ at circumference

⇒ ∠ in semi O

• Parallel lines \Rightarrow alternate \angle s

 \Rightarrow corresponding \angle s

 \Rightarrow interior \angle s

 \Rightarrow sides of Δ s proportional (Gr 12)

• Cyclic quadrilateral \Rightarrow opposite \angle s of quadrilateral supplementary

 \Rightarrow exterior \angle of cyclic quadrilateral

 $\Rightarrow \angle$ s at circumference in same O segment

• Tangents \Rightarrow tangent \perp radius

 \Rightarrow \angle between tangent and chord

⇒ two tangents from point

Step 3: Examine question: Write in abstract form.

Abstract form means to express what is required in terms of angles in the sketch.

If the following is required:

• Prove that two lines are parallel, then prove:

 \Rightarrow alternate \angle s are equal

 \Rightarrow corresponding \angle s are equal

 \Rightarrow interior \angle s on the same side are supplementary

• Prove that a triangle is isosceles, then prove:

 \Rightarrow the opposite angles are equal

• Prove that a quadrilateral is a cyclic quadrilateral (concyclic), then prove:

⇒ opposite angles of quadrilateral are supplementary

 \Rightarrow exterior \angle of quadrilateral is equal to interior opposite \angle

 \Rightarrow line segment spans equal \angle s

• Prove that a line is a tangent, then prove:

 \Rightarrow line \perp radius

 \Rightarrow \angle between line and chord is equal to opposite \angle

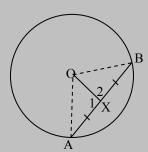
Step 4: Perform proof.

Proofs: Grade 11 geometry theorems

Theorem 1a (HG & SG): The join of the centre of a circle and the centre of a chord is normal to the chord.

Given: AX = XBTo prove: $OX \perp AB$

Construction: Join OA and OB.



In $\triangle AOX$ and $\triangle BOX$:

OX = OX (common) OA = OB (radii) AX = XB (given)

 $\therefore \Delta AOX \equiv \Delta BOX$ (side, side, side)

 $\therefore \hat{X}_1 = \hat{X}_2 \qquad \text{(congruence)}$

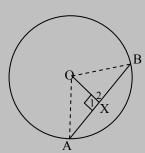
but $\hat{X}_1 + \hat{X}_2 = 180^{\circ}$ (\angle s on straight line)

 $\therefore \hat{X}_1 = \hat{X}_2 = 90^{\circ}$ $\therefore OX \perp AB$

Theorem 1b (HG): The normal from the centre of a circle to any chord bisects the chord.

Given: $OX \perp AB$ To prove: AX = XB

Construction: Join OA and OB.



In $\triangle AOX$ and $\triangle BOX$:

OX = OX (common) OA = OB (radii)

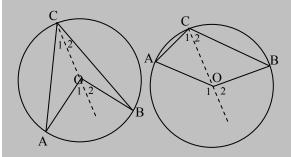
 $\hat{X}_1 = \hat{X}_2 = 90^{\circ} \qquad \text{(given)}$

 $\therefore \Delta AOX \equiv \Delta BOX \quad (90^{\circ}, \text{ side}, \text{ side})$

 \therefore AX = XB (congruence)

Theorem 2 (HG & SG): The angle spanning an arc of a circle at the centre is double the angle that it spans at any point on the circumference.

To prove: $\hat{AOB} = 2\hat{ACB}$ Construction: Join O with C.



Sketches 1 & 2:

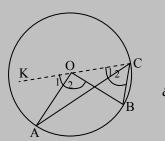
 $\hat{O}_1 = \hat{A} + \hat{C}_1$ (exterior \angle of Δ)

 $\hat{O}_1 = 2\hat{C}_1$ (OA = OC; radii)

Similarly $\hat{O}_2 = 2\hat{C}_2$

 $\therefore \hat{O}_1 + \hat{O}_2 = 2(\hat{C}_1 + \hat{C}_2)$

 $\therefore \hat{AOB} = 2\hat{ACB}$



 $\hat{O}_2 = K\hat{O}B$

Sketch 3:

 $\hat{O}_1 = \hat{A} + \hat{C}_1$ (exterior \angle of \triangle)

 $\hat{O}_1 = 2\hat{C}_1$ (OA = OC; radii)

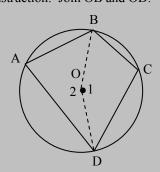
Similarly $\hat{O}_2 = 2\hat{C}_2$

 $\therefore \hat{O}_2 - \hat{O}_1 = 2(\hat{C}_2 - \hat{C}_1)$

 $\therefore A\hat{O}B = 2A\hat{C}B$

Theorem 5a (HG & SG): The opposite angles of a cyclic quadrilateral are supplementary.

Given: ABCD a cyclic quadrilateral To prove: $\hat{A} + \hat{C} = 180^{\circ}$, $\hat{B} + \hat{D} = 180^{\circ}$ Construction: Join OB and OD.



$$\hat{O}_1 = 2\hat{A} \& \hat{O}_2 = 2\hat{C} \ (\angle \text{ at centre} = 2 \times \angle \text{ at circumference})$$

$$\therefore \hat{O}_1 + \hat{O}_2 = 2(\hat{A} + \hat{C})$$

but
$$\hat{O}_1 + \hat{O}_2 = 360^\circ$$
 (revolution)

$$\therefore 2(\hat{A} + \hat{C}) = 360^{\circ}$$

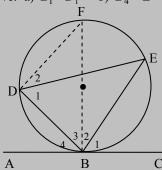
$$\therefore \hat{A} + \hat{C} = 180^{\circ}$$

 $\therefore \hat{B} + \hat{D} = 180^{\circ}$ (sum of interior \angle s of quadrilateral)

Theorem 9a (HG & SG): The angle formed by a tangent to a circle and a chord drawn from the tangent is equal to an angle in the opposite circle segment.

Given: AC is a tangent.

To prove: a) $\hat{B}_1 = \hat{D}_1$ b) $\hat{B}_4 = \hat{E}$



a) Draw diameter BF and join FD.

$$\hat{B}_1 + \hat{B}_2 = 90^{\circ}$$
 (radius \perp tangent)

$$\hat{D}_1 + \hat{D}_2 = 90^\circ$$
 (\angle in semi O)

but $\hat{B}_2 = \hat{D}_2$ (\angle s at circumference on FE)

$$\therefore \hat{\mathbf{B}}_1 = \hat{D}_1$$

b) $\hat{D}_1 + (\hat{B}_2 + \hat{B}_3) + \hat{E} = 180^{\circ} \text{ (interior } \angle \text{s of } \Delta)$

$$\hat{B}_1 + (\hat{B}_2 + \hat{B}_3) + \hat{B}_4 = 180^\circ (\angle s \text{ on straight})$$

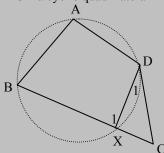
but
$$\hat{\mathbf{B}}_1 = \hat{D}_1$$
 (already proved)

$$\therefore \hat{\mathbf{B}}_4 = \hat{E}$$

Theorem 5b (HG): If a pair of opposite angles of a quadrilateral is supplementary, then the quadrilateral is a cyclic quadrilateral.

Given: $\hat{A} + \hat{C} = 180^{\circ}$

To prove: ABCD a cyclic quadrilateral



Assume that C does not lie on the circle. Now draw a circle through A, B and D. Join DX.

Therefore
$$\hat{A} + \hat{C} = 180^{\circ}$$
 (given)

and
$$\hat{A} + \hat{X}_1 = 180^{\circ}$$
 (opp. \angle s of cyclic quad ABDX)

$$\therefore \hat{C} = \hat{X}_1$$

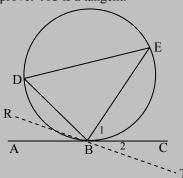
This is impossible because $\hat{X}_1 = \hat{D}_1 + \hat{C}$ (ext. \angle of Δ)

- .. Assumption was wrong.
- :. C lies on circle, therefore ABCD a cyclic quadrilateral.

Theorem 9b (HG): If a line through the terminal of a chord forms an angle with the chord equal to an angle in the opposite segment, then the line is a tangent to the circle.

Given: $\hat{\mathbf{B}}_1 = \hat{D}$

To prove: AC is a tangent.



Assume that AC is not a tangent, but RT is one.

 $\hat{B}_1 + \hat{B}_2 = \hat{D}$ (\angle between tangent & chord)

but $\hat{B}_1 = \hat{D}$ (given)

 $\therefore \hat{\mathbf{B}}_1 + \hat{\mathbf{B}}_2 = \hat{\mathbf{B}}_1 \text{ (both equal to } \hat{D} \text{)}$

This is false.

- : Assumption that RT is a tangent is false.
- ∴ AC is a tangent.

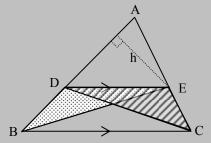
Proofs: Grade 12 geometry theorems

Theorem 1a (HG & SG): A line parallel to one side of a triangle divides the other two in proportional sections

Given: DE | BC

To prove:
$$\frac{AD}{BD} = \frac{AE}{EC}$$

Construction: Draw DC and BE.



$$\frac{Area\Delta ADE}{Area\Delta BDE} = \frac{\frac{1}{2}AD.h}{\frac{1}{2}BD.h} = \frac{AD}{BD}$$
 (same height h)

Similarly
$$\frac{Area\Delta ADE}{Area\Delta DEC} = \frac{AE}{EC}$$

But area $\triangle BDE$ = area $\triangle DEC$ ($\triangle s$ on the same base and parallel lines)

$$\therefore \frac{Area\Delta ADE}{Area\Delta BDE} = \frac{Area\Delta ADE}{Area\Delta DEC}$$

$$\therefore \ \frac{AD}{BD} = \frac{AE}{EC}$$

Theorem 1b (HG): If a line divides two sides of a triangle proportionally, then the line is parallel to the third side.

Given:
$$\frac{AD}{BD} = \frac{AE}{EC}$$

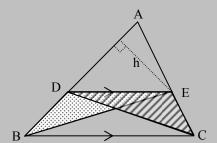
Construction: Draw DC and BE.

$$\frac{Area\Delta ADE}{Area\Delta BDE} = \frac{\frac{1}{2}AD.h}{\frac{1}{2}BD.h} = \frac{AD}{BD}$$
 (same height h)

Similarly
$$\frac{Area\Delta ADE}{Area\Delta DEC} = \frac{AE}{EC}$$

But
$$\frac{AD}{BD} = \frac{AE}{EC}$$
 (given)

Therefore
$$\frac{Area\Delta ADE}{Area\Delta BDE} = \frac{Area\Delta ADE}{Area\Delta DEC}$$



Theorem 2a (HG & SG): If two triangles are equiangular, then the lengths of their corresponding sides are proportional.

Given: $\triangle XYZ \& \triangle KLM$ with $\hat{X} = \hat{K}$, $\hat{Y} = \hat{L}$, $\hat{Z} = \hat{M}$

To prove:
$$\frac{KL}{XY} = \frac{LM}{YZ} = \frac{KM}{XZ}$$

Construction: Mark off LA = XY and LB = YZ on LK and LM.

$$\Delta LAB \equiv \Delta YXZ$$
 (s, \angle, s)

$$\therefore \hat{A}_1 = \hat{X}$$

But
$$\hat{X} = \hat{K}$$
 (given)

$$\hat{A}_1 = \hat{K}$$

 \therefore AB | | KM (corresponding \angle s)

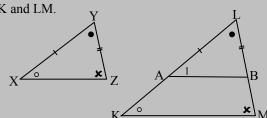
$$\therefore \frac{KL}{AL} = \frac{LM}{LB} \qquad (AB \mid \mid KM)$$

But
$$AL = XY$$
 and $LB = YZ$

$$\therefore \quad \frac{KL}{XY} = \frac{LM}{YZ}$$

Similarly, by marking off XY and XZ on KL and KM, it can be shown that $\frac{KL}{XY} = \frac{KM}{XZ}$

$$\therefore \frac{KL}{XY} = \frac{LM}{YZ} = \frac{KM}{XZ}$$



Theorem 2b (HG): If the lengths of the corresponding sides of two triangles are proportional, then the two triangles are equiangular.

Given: $\triangle XYZ \& \triangle KLM \text{ with } \frac{KL}{XY} = \frac{LM}{YZ} = \frac{KM}{XZ}$

To prove: $\hat{X} = \hat{K}_1$, $\hat{Y} = \hat{L}$, $\hat{Z} = \hat{M}_1$

Draw \triangle KMN on KM so that $\hat{X} = \hat{K}_2$, $\hat{Z} = \hat{M}_2$, $\hat{Y} = \hat{N}$

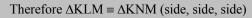
.. ΔXYZ and ΔKNM are equiangular.

$$\therefore \frac{KN}{XY} = \frac{KM}{XZ} \quad (equiangular \, \Delta s)$$

but
$$\frac{KL}{XY} = \frac{KM}{XZ}$$
 (given)

$$\therefore KL = KN$$

Similarly ML = MN



$$\therefore \hat{K}_2 = \hat{K}_1 \text{ (congruence)}$$

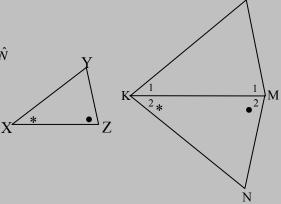
but
$$\hat{X} = \hat{K}_2$$
 (given)

$$\hat{X} = \hat{K}_1$$

Similarly $\hat{Z} = \hat{M}_1$ and $\hat{Y} = \hat{L}$

$$\therefore \Delta XYZ /// \Delta KLM (\angle, \angle, \angle)$$

Therefore $\hat{X} = \hat{K}_1$, $\hat{Y} = \hat{L}$, $\hat{Z} = \hat{M}_1$



Theorem 3 (HG): The normal from the right angle vertex of a right-angled triangle on the hypotenuse divides the triangle in two triangles that are uniform to each other and to the original triangle.

Given: $\triangle ABC$ with $\hat{A}_2 + \hat{A}_1 = 90^\circ$ and $\hat{D}_1 = 90^\circ$

To prove: $\triangle ABD \parallel \triangle CAD \parallel \triangle CBA$

$$\hat{A}_2 + \hat{A}_1 = 90^\circ$$
 (given)

$$\therefore \hat{B} = \hat{A}_2 \qquad \qquad \text{Similarly} \quad \hat{A}_1 = \hat{C}$$

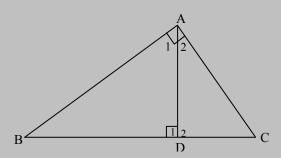
In \triangle ABD, \triangle CAD and \triangle CBA:

$$\hat{B} = \hat{A}_2 = \hat{B}$$
 (proved)

$$\hat{A}_1 = \hat{C} = \hat{C}$$
 (proved)

$$\hat{D}_1 = \hat{D}_2 = B\hat{A}C$$
 (proved)

 $\therefore \Delta ABD \parallel \Delta CAD \parallel \Delta CBA$ (uniform Δs)



Deductions (NB: Memorise)

- $\triangle CBA \parallel \triangle ABD \Rightarrow AB^2 = BD.BC$
- $\triangle ABD \parallel \triangle CAD \Rightarrow AD^2 = BD.DC$
- $\triangle CBA \parallel \triangle CAD \Rightarrow AC^2 = DC.BC$