1. (a)
$$\angle P = 23^{\circ}$$
 [base $\angle's$ of $\triangle POQ$ with $OP = OQ$]
 $y = 2(\angle P)$ [central $\angle = 2 \times \angle$ on circumf.]
 $= 46^{\circ}$
 $\angle PQR = 90^{\circ}$ [\angle on a semicircle]
 $\therefore \angle OQR = 67^{\circ}$
 $\therefore x = 67^{\circ}$ [base $\angle's$ of $\triangle ROQ$ with $OR = OQ$]
(b) $\angle M_2 = 25^{\circ}$ [base $\angle's$ of $\triangle KOM$ with $OK = OM$]
 $\angle KOM = 130^{\circ}$ [$\angle's$ of $\triangle KOM$ suppl.]
 $y = \frac{1}{2}(\angle KOM)$ [central $\angle = 2 \times \angle$ on circumf.]
 $y = 65^{\circ}$

$$x + y = 180^{\circ}$$
 [opp ∠'s of cyclic quad.]
 $\therefore x = 115^{\circ}$

(c)
$$x = 30^{\circ}$$
 [tan-chord theorem]
 $\angle D = x = 30^{\circ}$ [subt. by *BF*]
 $\angle FBD = 90^{\circ}$ [\angle on a semicircle]
 $\therefore y = 60^{\circ}$ [sum of $\angle s$ of $\triangle DFB$]

2.
$$AB \perp OD$$
 [radius is \perp bisector of chord]
 $AD = \frac{1}{2}AB = 6$
 $r = x + 2$ [given]
In $\triangle ADO$, $r^2 = x^2 + 6^2$ [Pythagoras]
 $(x + 2)^2 = x^2 + 36$
 $x^2 + 4x + 4 = x^2 + 36$
 $\therefore x = 8$ and hence $r = 10$

3. (a) $\angle O_1 = 80^\circ$ [central $\angle = 2 \times \angle$ on circumf.]

(b)
$$\angle Y_4 = \angle YLO$$
 [base $\angle s$ of ΔYOL with $OY = OL$]
 $\angle Y_4 + \angle YLO + \angle O_1 = 180^\circ [\angle s \text{ of } \Delta]$
 $2\angle Y_4 + 80^\circ = 180^\circ$
 $\angle Y_4 = 50^\circ$

(c)
$$\angle L_7 = \angle O_1 = 80^\circ \text{ [alt. } \angle's\text{]}$$

 $\angle L_7 = \angle M = 80^\circ \text{ [base } \angle's \text{ of } \Delta MOL \text{ with } OM = OL\text{]}$
 $\angle O_2 + \angle L_7 + \angle M = 180^\circ [\angle's \text{ of } \Delta LOM\text{]}$
 $\angle O_2 = 20^\circ$

4. (a) tan-chord theorem.

(b)
$$\angle D_3 = 90^\circ$$
 [\angle on a semicircle]
 $\angle E = 90^\circ - x$ [$\angle s$ of \triangle suppl.]
 $\angle A_1 = \angle D_2$ [subt. by chord TC]
 $\therefore \angle A_1 = \angle E = 90^\circ - x$ [both = $\angle D_2$]

- 5. (a) $\angle ACB = 90^{\circ} \ [\angle \text{ on a semicircle}]$ $\angle ODB = 90^{\circ} \ [given]$ $\therefore \angle ACB = \angle ODB = 90^{\circ}$ Hence $AC \parallel OE$
 - (b) $\angle A = x$ [tan-chord theorem]

 $\angle BOD = \angle A = x$ [alt. $\angle s$]

(c)
$$\angle BOE = \angle BCE$$
 [proved above]
 $\therefore OBEC$ is cyclic [$\angle s$ subt. by $BE =$]

(d) $\angle P + \angle PCA + \angle A = 180^{\circ} [\angle' s \text{ of } \Delta \text{ suppl.}]$ $\angle P + (90^{\circ} + x) + x = 180^{\circ}$ $\angle P = 90^{\circ} - 2x$

> If $\angle ABC = 60^{\circ} \implies x = 30^{\circ}$ Hence $\angle P = 90^{\circ} - 2(30^{\circ}) = 30^{\circ}$

- 6. (a) $\angle MPA = 90^{\circ}$ [tan \perp radius] Similarly $\angle MRA = 90^{\circ}$ Hence *APMR* is cyclic [opp. $\angle's$ suppl.]
 - (b) $\angle P_2 = \angle R_2$ [base $\angle s$ of $\triangle MPR$ with PM = RM] $\angle A_1 = \angle R_2$ [subt. by PM] Hence $\angle P_2 = \angle A_1$ [both = $\angle R_2$] MP is tangent to circle APS [tan-chord theorem]
- 7. (a) ABDE is a cyclic quad. $[\angle E_1 = \angle D_1 \text{ subt by } AB \text{ both } = 90^\circ]$ TPCD is a cyclic quad. $[Ext \angle ADC = \text{opp. int. } \angle TPC \text{ both } = 90^\circ]$ CDHE is a cyclic quad. $[Opp. \angle's \text{ HEC} \text{ and } CDH \text{ suppl.}]$

(b) $\angle C_1 = \angle D_5$ [subt. by TP] $\angle C_1 = \angle B_1$ and $\angle C_1 = \angle A_2$ [tan-chord theorem]

(c)
$$\angle B_2 = \angle A_2$$
 [subt. by DE]
 $\angle B_1 = \angle A_2$ [subt. by TC]
Hence $\angle B_1 = \angle B_2$ [both = $\angle A_2$]

- (d) $\angle B_1 = \angle D_5$ [both = $\angle C_1$] $\therefore DP$ is tangent to circle *BDT* [tan-chord theorem]
- 8. (a) A radius is a perpendicular bisector of a chord.

(b) In ΔRAQ and ΔSAQ AR = AS [proved above] $\angle RAQ = \angle SAQ$ [given] AQ is common $\Delta RAQ \equiv \Delta SAQ$ [s, \angle, s] $\angle Q_1 = \angle Q_2$ [from congruency]

(c) $\angle RQS = 2t$ [given]

(i) $\angle RTS = \angle RQS = 2t$ [subt. by RS]

(ii)
$$\angle RSQ = \angle SRQ$$
 [from congruency]
 $\angle RSQ + \angle SRQ + \angle RQS = 180^{\circ} [\angle's \text{ of } \Delta \text{ suppl.}]$
 $2\angle RSQ + 2t = 180^{\circ}$
 $\angle RSQ = 90^{\circ} - t$
OR
 $\angle RSQ + \angle SQA + \angle SAQ = 180^{\circ} [\angle's \text{ of } \Delta \text{ suppl.}]$
 $\angle RSQ + t + 90^{\circ} = 180^{\circ}$
 $\angle RSQ = 90^{\circ} - t$

(iii) $\angle POR = 2 \angle Q_1 = 2t$ [central $\angle = 2 \times \angle$ on circumf.] $\therefore \angle ROA = 180^\circ - 2t$ [adj. $\angle s$ on a straight line]

(d)
$$\angle POR = \angle RTB$$
 [both = 2t]
Hence *ROBT* is cyclic. [ext. \angle = opp. int. \angle]

9. 9.1.
$$\frac{CD}{AC} = \frac{BE}{AB}$$
 [line drawn || to one side of Δ]
 $\frac{CD}{3} = \frac{3}{1} \Longrightarrow CD = 9$ units.

9.2. $x + 3 = 9 \implies x = 6$ units

9.3. In $\triangle ABC$ and $\triangle AED$ $\angle A$ is common $\angle ABC = \angle AED$ and $\angle ACB = \angle ADE$ [corr. $\angle 's$] Hence $\triangle ABC$ ||| $\triangle AED$ $\therefore \frac{BC}{ED} = \frac{AB}{AE}$ [from similarity] $\frac{BC}{9} = \frac{1}{4} \Longrightarrow BC = 2,25$ units

9.4.
$$\frac{\text{area of } \Delta ABC}{\text{area of } \Delta GFD} = \frac{\frac{1}{2}AC.BC.Sin \angle ACB}{\frac{1}{2}GD.FD.Sin \angle GDF}$$
$$= \frac{AC.BC}{GD.FD} \quad [\angle ACB = \angle GDF]$$
$$= \frac{3(2,25)}{9(3)} = 0,25$$

- 10. 10.1. $\frac{MS}{SR} = \frac{MN}{NP}$ [line drawn || to one side of Δ] $\frac{12}{SR} = \frac{2r}{\frac{2r}{3}} \Longrightarrow SR = 4 \text{ units}$
 - 10.2 In ΔMSN and ΔMRP $\angle M$ is common $\angle MSN = \angle MRP$ and $\angle MNS = \angle MPR$ [corr. $\angle's$] Hence $\Delta MSN ||| \Delta MRP$ $\therefore \frac{SN}{RP} = \frac{MN}{MP}$ [from similarity] $\frac{SN}{12} = \frac{2r}{\frac{Br}{3}} \implies SN = 9$ units
 - 10.3. In ΔMSN , $\angle MSN = 90^{\circ}$ [\angle on a semicircle] $MN^2 = MS^2 + SN^2$ [Pythagoras] $(2r)^2 = 12^2 + 9^2$ $4r^2 = 144 + 81 \Longrightarrow r = 7,5$ units
- 11. 11.1. $BC \parallel AD$ [opp. sides of \parallel^m] $\therefore FK \parallel AD$ [both \parallel to BC] CF = FA [diagonals of a \parallel^m bisect] $\frac{CK}{KP} = \frac{CF}{FA}$ [line drawn \parallel to one side of ΔCAP] $\frac{CK}{KP} = 1$ [since CF = FA] Hence CK = KP11.2. $\frac{BS}{KP} = \frac{5}{KP}$ [given]

$$\frac{BA}{BA} = \frac{5-2}{2} \Longrightarrow \frac{SA}{AB} = \frac{3}{2}$$

 $\frac{SP}{PC} = \frac{SA}{AB}$ [line drawn || to one side of ΔBCS] $\frac{SP}{PC} = \frac{3}{2} \Longrightarrow \frac{PC}{SP} = \frac{2}{3} \Longrightarrow \frac{2KC}{SP} = \frac{2}{3} \Longrightarrow \frac{KC}{SP} = \frac{1}{3}$ Hence KC: SP = 1:3

11.3. In $\triangle SAP$ and $\triangle SBC$ $\angle S$ is common $\angle SAP = \angle SBC$ and $\angle SPA = \angle SCB$ [corr. $\angle's$] Hence $\triangle SAP$ ||| $\triangle SBC$ $\therefore \frac{AP}{BC} = \frac{SP}{SC}$ [from similarity] $\frac{AP}{15} = \frac{3}{5} \implies AP = 9$ units

12.

- 12.1.1. $\angle ADB = 90^{\circ}$ $[\angle \text{ on a semicircle}]$ $OS \parallel AC$ [co-int. $\angle's$ suppl.]
- 12.1.2. $\angle ADB = 90^{\circ} \quad [\angle \text{ on a semicircle}]$ $\angle ABC = 90^{\circ} \quad [\tan \perp \text{ radius}]$ $\ln \Delta ABC \text{ and } \Delta ADB$ $\angle A \text{ is common}$ $\angle ABC = \angle ADB = 90^{\circ}$ Hence $\Delta ABC ||| \Delta ADB \quad [\angle, \angle, \angle]$ Similarly $\Delta ABC ||| \Delta BDC$ Hence $\Delta ABC ||| \Delta ADB ||| \Delta BDC$
- 12.1.3. From $\triangle ABC ||| \triangle ADB$ $\frac{AB}{AD} = \frac{AC}{AB}$ [from similarity] $\therefore AB^2 = AD.AC$
- 12.2. $\frac{BS}{SC} = \frac{BO}{OA} \quad [OS \parallel AC \text{ in } \Delta ABC]$ $\therefore BS = SC \quad [\text{since } BO = OA, \text{ radii}]$ $\frac{\text{area of } \Delta ABC}{\text{area of } \Delta OSB} = \frac{\frac{1}{2}AB.BC}{\frac{1}{2}OB.BS} = \frac{2.OB.2BS}{OB.BS} = 4$ 13.1 $\angle B_2 = \angle D_2 \quad [\text{base } \angle's \text{ of } \Delta BMD \text{ with } MB = MD]$ $\angle B_1 = \angle D_1 \quad [\text{given}]$ Hence $\angle ABD = \angle MDC$ $\angle CMB = \angle BAD \quad [2\angle BAD = \angle BMD \text{ and } \angle M_1 = \angle M_2]$ $\angle MCD = \angle ADB \quad [\text{sum } \angle's \text{ of } \Delta]$

$$\therefore \Delta ABD |||\Delta MDC$$

$$\frac{AB}{MD} = \frac{BD}{DC} \qquad \text{[from similarity]}$$

13.2.
$$BJ = JD$$
 [$\Delta BMJ \equiv \Delta DMJ$]
 $\frac{AB}{MD} = \frac{BD}{DC}$ [proved above]
 $AB = \frac{BD.MD}{DC}$
 $= \frac{2.JD.MB}{DC}$ [$2JD = BD$ and $MB = MD$]