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Abstract. Emerging quantum technologies rely principally on quantum phenomena such as
superposition and entanglement for their unique capabilities. To this end, it is essential to
develop well-defined and efficient protocols to produce and further exercise control over states
of quantum bits that exhibit desired quantum mechanical traits. From a pure separable
multipartite state, a control sequence, which includes rotation, spin squeezing via one-axis
twisting, quantum measurement and post-selection, generates a highly entangled multipartite
state, which we refer to as a Projected Squeezed (PS) state. Through an optimization method,
we then identify parameters required to maximize the overlap fidelity of the PS state with
the maximally entangled Greenberger-Horne-Zeilinger (GHZ) state. This method leads to
an appreciable decrease in state preparation time of N -qubit GHZ states when compared to
preparation through unitary evolution only. The efficiency of the PS state protocol is studied
in non-ideal experimentally relevant settings by employing numerical methods to simulate
dephasing channels.

1. Introduction
Multipartite entangled quantum states play a central role in quantum information and related
subareas. As such, there is already an established class of applications in quantum sensing [1],
quantum computing [2], quantum communication [3], quantum cryptography [4] and quantum
metrology [5]. This highlights the importance of the basic quantum control theoretic task, which
seeks to establish well-defined methods for producing highly entangled multipartite states from
initial pure separable states. In reference [6], we proposed such a protocol for producing highly
entangled GHZ-type states which we denote as Projected Squeezed states (PS states). Using
the protocol, we are able to produce PS states with GHZ overlap fidelity F > 0.99. Essential
steps in the protocol include spin-squeezing [7], which generates correlations between qubits,
and quantum measurement (see equation (6) in reference [6]), which requires post-selection for
obtaining the desired measurement outcome.

In reference [6], we considered the ideal case without decoherence, hence our computational
modelling of the protocol was restricted to the symmetric subspace (known as the Dicke-
basis [8]). This subspace is no longer suitable when including decoherence, since as a consequence
of decoherence the state can in a sense migrate out of the subspace. Note that the dimension
of the full Hilbert state space (computational basis) scales exponentially with qubit system size
(∼ 2N ), while the dimension of the symmetric subspace spanned by the Dicke-basis has linear
scaling (∼ N + 1). Due to the resultant increased computational complexity, only systems in
the approximate range N ≤ 10 are viable for modelling using standard computational resources.
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In this work we consider a low system size example of N = 4 (as opposed to the original
study [6] where we considered a larger spread of system size N). We now consider the efficacy
and robustness of the protocol in experimentally relevant settings, by including decoherence
using numerical methods [9]. Our focus will be on dephasing, since this has been the dominant
form of decoherence [10] when utilizing trapped-ion systems for spin-squeezing (our proposed
experimental setup) [11].

2. PS State Protocol
The N -qubit Greenberger-Horne-Zeilinger state (GHZ state) [12] reads as

|GHZ⟩ := |0⟩⊗N + |1⟩⊗N

√
2

. (1)

Our protocol for producing highly entangled GHZ-type states can be summarised by the
following sequential steps [6]:

Step 1: For an N -qubit multipartite system, we initialize to an all spin-up state

|ψ(0)⟩ = | ↑⟩ ⊗ · · · ⊗ | ↑⟩︸ ︷︷ ︸
N -qubits

. (2)

Step 2: To form the coherent spin state |CS⟩, we execute a π/2-collective Ĵx := 1
2

∑N
i=1 σ̂i

x

rotation of the initial all-spin up state (2), i.e.,

|ψ(0)⟩ 7→ exp

(
− i

π

2
Ĵx

)
|ψ(0)⟩ =: |CS⟩, (3)

where σ̂i
x is the Pauli-x̂ spin operator acting on the i-th component of the state tensor

product (see Figure 1(a)). In our analysis, we use the Husimi representation as it is more
intuitive for visualizing symmetric states like the PS state (see Figure 1 and Figure 2). In
principle, any phase space distribution could be used.

Step 3: The coherent spin state then undergoes spin-squeezing by the unitary operator

ÛSq(χt) := exp

(
− iχtĴ2

z

)
, (4)

where Ĵz :=
1
2

∑N
i=1 σ̂i

z and χt denotes the squeezing magnitude (see Figure 1(b)).

Step 4: The squeezed coherent spin state then undergoes a -π/2-collective Ĵx := 1
2

∑N
i=1 σ̂i

x

rotation (see Figure 1(c)), i.e.,

ÛSq(χt)|CS⟩ 7→ exp

(
i
π

2
Ĵx

)
ÛSq(χt)|CS⟩. (5)

Step 5: We now execute a Gaussian quantum measurement, characterized by Kraus
operators, which reads as

Âc :=
N∑

m=0

√
Pr(N −m|c)

∑
{M}

∣∣ 〉︸ ︸↑ · · · ↓j1 · ·︷︷· ↓jm · · · ↑
N -qubits

〈 ∣
↑ · · · ↓j1 · · · ↓jm · · · ↑ ∣, (6)

where
( ∑
{M}

·
)
denotes the summation over all binary permutations (of length N) with m-

spin down qubits. A modification of the Kraus measurement operators described in the
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original study (equation (6) in [6]) is required, since the PS state can, as a result of the
dephasing channel (see equations (10)-(12) later on), migrate out of the symmetric subspace
spanned by the Dicke basis. As such, the full Hilbert space should be considered. There
is√some level of freedom in choosing how to distribute the projector weightings, denoted

P ·|c), without compromising the required completeness condition of Kraus operators,

i.e.,

r(∫ †
cÂcÂ dc = 1 (see [13]). Equation (6) is a natural extension of the Kraus measurement

operators (equation (6) in [6]) such that the completeness condition extends to the full
Hilbert space. Additionally, we consider equation (6) as it produces favourableGHZ overlap
fidelity values for N = 4, about measurement outcome c = 0. The projector weightings, in
summation (6), are characterized by the Gaussian probability distribution

Pr
(
x|c

)
:=

1√
2πσ2

exp

[
− (x− c)2

2σ2

]
, (7)

where {c}c∈R denotes the set of measurement outcomes (with cardinality of the continuum).
The post-measurement state is given by

ÂcρÂ
†
c

Tr
[ †

cÂ Âcρ
] , (8)

for measurement outcome c, which occurs with probability Tr
[ †

cÂ Âcρ
]
[13]. Since the

quantum measurement is a stochastic process, a chosen result is post-selected. The
numerical models yield optimal results for the measurement outcome value c = 0 (for
N = 4).

Step 6: Finally, in sequence, we execute collective Ĵx and Ĵy rotations (by −π/7 and π/2
respectively for N = 4), for the purposes of generating a PS state ρPS , which has a maximal
GHZ overlap fidelity F (see Figure 2). The overlap fidelity between the PS and GHZ state
density operators is given by

F(ρPS) :=

(
tr
√√

ρPSρGHZ
√
ρPS

)2

, (9)

where
√
· now denotes the matrix square root.

2

Figure 1. (N = 4) Husimi representations [17] (projections onto a rotated coherent spin state)
of (a) step 2 - forming the |CS⟩ state, (b) step 3 - spin squeezing by χt = .15, (c) step 4 -

collective Ĵx rotation by −π .
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Figure 2. (N = 4) Husimi representations of the PS state vs the GHZ state.

As in [6], a numerical optimization method (random walk–Markov chain Monte Carlo type
regime) is employed to find, respectively, the measurement operator variance σ2 > 0 (see
equation (7)) and squeezing magnitude χt > 0, which maximizes the overlap fidelity (denoted F)
of the PS state and GHZ state (1). For N = 4, we find that the optimal squeezing magnitude
and operator measurement variance are respectively χt = .15 and σ2 = 1.

3. Numerical Methods
To model the evolution of the density operator in the presence of decoherence, we utilize the
(Kraus) operator sum formalism [9] given by

ρ(t+ dt) =
∑M
µ=0

M̂µ(dt)ρ(t)M̂
†
µ(dt), (10)

for infinitesimal time steps dt. For computational purposes, we approximate the infinitesimal
increments dt with small finite increments hereafter denoted as ∆t. The dephasing channels are
characterized by the Kraus operators

M̂0 =

(√
1− p 0
0

√
1− p

)
(11)

and

M̂1 =

(√
p 0
0 −√

p

)
, (12)

p
∆twith the decoherence rate given by Γ := , for qubit decay probability p during time ∆t.

The analysis which follows assumes negligible dephasing for non-squeezing steps of the
protocol, whilst during the squeezing step, the dephasing operators, given by (11) and (12),
act locally on each qubit. This is in line with envisioned experimental applications, utilizing
ion-traps in particular [10, 11, 16]. In step 3, for finite time increments ∆t, we interlace unitary

squeezing ÛSq(χ∆t) with dephasing characterized by equations (10)-(12), for varied qubit decay
probability values p = Γ∆t. During the squeezing step, the total dephasing time for the PS and
GHZ protocols, are respectively nPS∆t = .15/χ and nGHZ∆t = π/2χ, where nPS and nGHZ

are the number of χ∆t - squeezing increments (for our numerical methods we assume χ = 1 and
∆t = 1e−3). Therefore, given decay probability p, the corresponding dephasing rate is

pχnPS

.15

2pχnGHZ

π
Γ = = . (13)

As in reference [6], the measurement outcome c ≈ 0 is post-selected (with operator variance
σ2 = 1) as it yields a state with distinct probability lobes on opposing sides of the multipartite
Bloch sphere (see Figure 2); this is a characteristic feature of the maximally entangled GHZ
state (1).
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Û

4. Dephasing Results
To study the efficacy of the PS state protocol with a given dephasing rate Γ, we compare it
with GHZ state generation with π/2-squeezing of the coherent spin state (this yields the state

Sq(π/2)|CS⟩). This state is LU-equivalent (equivalent under local unitary operations) to the

GHZ state (1). More specifically( , a)collective Ĵx rotation by π/2, followed by a local phase gate

(commonly denoted by S :=
1 0
0 i ) acting on the N -th qubit, yields the GHZ state (1). As

such, the unitary π/2-squeezing only version of the GHZ generation serves as a benchmark. We
stress again the usefulness of the PS state protocol in that it requires a much shorter squeezing
time compared to this benchmark, and therefore, in principle, should perform better in the
presence of noise.

In Figure 3 and Figure 4, we respectively compare the quantum Fisher information (QFI) [14]

(denoted by Q(ρ, Â) for a chosen operator Â) with respect to the Ĵz operator, and GHZ overlap
fidelity F , of the PS state protocol with the π/2-squeezing only GHZ state generation protocol
for varying dephasing rates Γ.

The QFI is studied because entanglement bounds known as the Heisenberg and Shot-Noise
bounds, are respectively the maximum attainable QFI (for the collective operator Ĵz), and
a separable upper bound (the violation of which implies entanglement). The aforementioned
Heisenberg upper bound is saturated for the GHZ state (hence simply labeled ‘GHZ’ in Figure
3). All states which violate the upper shot-noise bound are entangled [15].

As shown in Figure 3 and Figure 4, the PS state protocol obtains maximum QFI and GHZ
overlap fidelity values for measurement result c = 0. From these figures, we can also observe the
robustness of the protocol by noting the range of measurement outcomes for which it maintains
an advantage over the GHZ protocol (in the presence of noise). Since the quantum measurement
is a stochastic process, it is important to note that the post-selected results B(c = 0, 1e−3) (where
B denotes an open interval, more generally an open-ball, centered about measurement result
c = 0) occur with probability ≈ 1/20. This means that the improvement in preparation time is
at the expense of the success probability of the protocol. Further work is needed to ascertain
the trade-off between the overlap fidelity and preparation time of the PS state protocol and
GHZ state squeezing only protocol.

Lastly, in Figure 4 the entanglement bound labelled ‘GME-Wit’ represents a sufficient
condition (in terms of entanglement witnesses [15]) for genuine multipartite entanglement
(GME). More specifically, the GHZ overlap fidelity F > 1/2 implies GME.

5. Discussion
As shown in Figure 3 and Figure 4, there are experimentally relevant ranges of dephasing
(see [16]), for which the reduced squeezing time of the PS protocol, allows the generation of
states with significantly larger QFI and GHZ-overlap fidelity values F than that generated by
unitary π/2-squeezing only (GHZ protocol). The trend suggests that the PS state maintains
an advantage for increased dephasing beyond a given qubit decay rate (for example consider
p ∈ {1e−3, 1e−4}).

For a larger system size N , the exponential increase in computational complexity can be
suppressed by utilizing numerical methods, such as the quantum trajectory method [9]; together
with computational schemes such as parallel computing. We leave the implementation of this
for a future study.
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Figure 3. (N = 4) QFI of the PS State protocol vs the squeezing only GHZ protocol (for
varied dephasing rate p); the latter is represented by dashed horizontal line plots (orange). The

Shot-Noise upper bound (green) denotes the maximum QFI (with respect to Ĵz) for separable
N -qubit systems.

Figure 4. (N = 4) Overlap fidelity of the PS State protocol vs the squeezing only GHZ
protocol (for varied dephasing rate p); the latter is represented by dashed horizontal line plots
(orange). The GME-Wit lower bound (purple) denotes a sufficient condition for GME (with
respect to the GHZ overlap fidelity F).
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