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Abstract. We propose a new approach to search for new resonances beyond the Standard
Model (SM) of particle physics in topological configurations using Machine Learning techniques.
This involves a novel classification procedure based on a combination of weak-supervision and
full-supervision in conjunction with Deep Neural Network algorithms. The performance of
this strategy is evaluated on the production of SM Higgs boson decaying to a pair of photons
inclusively and exclusive regions of phase space, for specific production modes at the Large
Hadron Collider (LHC), namely through the gluon-gluon fusion, the fusion of weak vector
bosons, in associated production with a weak vector boson, or in association with a pair of
top quarks. After verifying the ability of the methodology to extract different Higgs signal
mechanisms, a search for new phenomena in high-mass diphoton final states is setup for the
LHC.

1. Introduction
After the discovery of a Higgs boson (h) [1, 2, 3] at the Large Hadron Collider (LHC) by the
ATLAS [4] and CMS [5] experiments, a number of anomalies have been identified based on
discrepancies in the production of leptons at these experiments [6]. These anomalies join a
number of phenomena that represent a significant experimental evidence, such as Dark Matter,
the origin of neutrino mass, the matter-anti-matter asymmetry, in addition to a number of
theoretical problems [7].

Machine Learning (ML) can play a significant role in solving these problems, by searching for
resonances in corners of the phase-space that are either unexplored or poorly covered by the cut-
based analysis strategy. Therefore, in this paper we extend the applications of machine learning
in high energy physics to the search for new physics at the LHC, using weak supervision learning
with topological requirements. The approach is intended to identify different phase-space of the
resonances, since they are expected to be generated with different production mechanisms at the
LHC and it is adequate to extract more subtle signals in the data without relying on a specific
model of the signal with a particular set of parameters. We have organised this paper as follows:
section 2 describes the simulation of both background and signal processes of the production
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of the SM Higgs boson decaying to a pair of photons at the LHC, as a benchmark. Section 3
briefly introduces weak supervision learning classification and the used deep neural network
(DNN) architecture. The performance of the weak supervision classification will be evaluated in
section 4. Section 5 proposes an approach for the search for new physics, where weak supervision
learning is restricted to the topological configurations of the phase space, such as number of b-
tagged jets, number of leptons, vector boson fusion topology, etc... Finally, section 6 summarises
the study with suggestions and prospects for the future search of resonances at the LHC.

2. SM Higgs datasets and event selection
The performance of the ML classifier, described in section 3, is tested on simulated Higgs to
di-photon (pp → h → γγ) events as a benchmark. We focus on the proton-proton collisions
at the LHC with a centre-of-mass energy of 13 TeV. Background and signal Samples were
produced using MadGraph5 aMC@NLO 2.6.7 with Next-to-Leading Order accuracy in QCD [8].
The parton showering and hadronization were simulated with PYTHIA 8.2 [9] using ATLAS A14
event tuning and NNPDF2.3 LO parton distribution function set [10]. Events were processed
with Delphes 3 [11], which provides an approximate fast simulation of the current ATLAS
experiment. Events of interest were simulated by imposing a set of generator-level cuts, where
the transverse momentum of the photons is required to be greater than 25 GeV and the di-photon
invariant mass to be between 105 and 160 GeV. Hadronic jets were reconstructed using the anti-
kt algorithm [12] with the radius parameter, R = 0.4, as implemented in the FastJet 3.2.2 [13]
package. Jets with pT > 30 GeV and |η| < 4.7 are considered. In addition, jets originating
from bottom quarks are identified as b-jets with b-tagging algorithms [14]. Reconstructed jets
overlapping with photons, electrons or muons in a cone of size R = 0.4 are removed. Electrons
and muons are required to have pT > 25 GeV and |η| < 2.5. Finally, an inclusive event selection
of at least two photons, that have pT > 25 GeV and |η| < 2.37, is applied. The reconstructed
di-photon invariant mass spectra, mγγ , for signal and background are shown in figure 1.
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Figure 1. Di-photon invariant mass spectrum
at 13 TeV of proton-proton collision, corre-
sponds to an integrated luminosity of 36.1 fb−1.
The different production mode of the Standard
Model Higgs boson samples, are normalised to
the cross sections times the di-photon decay
branching ratio.
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3. Weak supervision classification and DNN architecture
The main purpose of supervised learning is to train a model on fully labelled data where each
training example x~i comes with a label yi ∈ {0, 1}, in a case of binary classification task. The
model is trained to minimise the loss function which can be in a form of binary cross-entropy:

`(y, ŷ) = −y · log ŷ + (1− y) · log(1− ŷ), (1)

where ŷ is the model output and y is the target output (1 for signal and 0 for background).
In the case of weak supervision [15], the learning phase during this paradigm takes place on
partially/weakly labelled data set [16]. These weakly labelled data is then used by the classifier
for the training. Contrariwise of the the full supervision (see equation 1), weak supervision uses
the following equation:

fweak = argminf :Rn→[0,1]

∑
K

`

(
1

|K|
∑
i∈K

ŷi, yK

)
, (2)

where K denotes training data batches and yK is the signal ratio in each batch. The performance
of weak supervision was compared to that of full supervision in [18] and weak supervision
achieved reasonable results, despite knowing only a fraction of the labels.

Figure 2. DNN architecture for the classification of events as background or signal in this
study, with the "Layout=TANH|26,TANH|26,TANH|13,LINEAR" configuration.

Events from the simulated dataset are classified using a DNN algorithm, as implemented in
the package ROOT [19] and the TMVA [20] data processing framework. The DNN architecture
implemented in this study consists of an input layer, three hidden layers and an outer layer.
The input layer consists of 13 neurons, which represent the kinematic features of the dataset.
The three hidden layers are made up of 26, 26 and 13 neurons, respectively. The output layer
consists of a single neuron. Two activation functions are used here: a hyperbolic tangent for
the hidden layers, and a sigmoid function for the output layer. Since we are dealing with a
binary classification problem, where the events are classified as signal or background, the cross-
entropy (see equation 1) is used as a loss function. The training of the classifier is divided into
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three stages. The first stage begins with a learning rate of 10−2 and a momentum of 0.9. In
order to avoid overtraining the classifier, the weights are regularised using the L2 option, which
multiplies a scaling factor of 10−3 to the norms of the weight matrices. For the second training
stage, learning rate and momentum are reduced to 10−3 and 0.5, respectively. For the final
training phase, the learning rate is set to 10−2 and the momentum to 0.3. Figure 2 describes
the network topology and the input variables used in this study.

4. Weakly supervised learning for the classification of the SM Higgs boson
For the weak supervised learning study on the Higgs production mechanisms, the signals and
background processes are mixed in the Higgs invariant mass window of 120 GeV to 130 GeV. The
sideband contains only pure background in the region between 105 GeV and 160 GeV, excluding
the signal mass window. The purpose of this procedure is to evaluate the ML algorithm’s ability
to classify a signal from an unknown mixture of signal and background, with respect to pure
background in the sideband. According to the receiver operator characteristic (ROC) analysis
results shown in figure 3, it is evident that weak supervision is capable of separating different
signal candidates. However, the signal and background classification is not satisfactory when
compared to full supervised learning (see table 1). Given these points, weak supervision seems
to be inefficient due the complexity of the phase-space explored here. For that reason a guided
weak supervision method with topological requirements is introduced. This will be discussed
explicitly in section 5.
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Figure 3. Weakly supervised ROC curves, us-
ing DNN classifier for different Higgs produc-
tion mechanisms.

Table 1. Comparison of the integral of the ROC curve response from different supervised
learning methods.

Process Full Supervision Weak Supervision

ggF 0.780 0.675
VBF 0.965 0.804
Wh 0.951 0.842
Zh 0.936 0.796
tt̄h 0.997 0.773
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5. Weak supervision learning with topological requirements
The performance of the weak supervised learning seems to be inefficient to separate different
signal candidates, due the complexity of the phase-space explored here. Therefore there is a
need to implement the method that we refer to as the guided weak supervision method. In
guided weak supervision, the training is restricted to the topological signatures derived from
selected production mechanisms. The effectiveness of this methodology is evaluated and verified
on the VBF, Wh and tt̄h production mechanisms. The results are quantified and compared to
the inclusive weak supervision in table 2.

The SM Higgs boson production mode through VBF represents the second largest cross
section at the LHC. The VBF mechanism in the SM entails the scattering of two quarks,
leading to two hard jets in the forward and backward regions of the ATLAS detector with
high di-jet invariant mass, mjj . These topological characteristics can be exploited by the DNN
to distinguish VBF from backgrounds and other production mechanisms. In this context, the
VBF topology is defined as events with at least two jets. This is followed by a signal significance
scan using mjj and the pseudorapidity separation between the two leading jets, ∆ηjj . We use the
signal significance scan to maximise the relative contribution of the VBF production mechanism
and minimise the background yield as much as possible.

A similar test is performed on the associated production of Higgs boson, with a W gauge
boson, where the neural networks are trained separately with two topological features from the
Wh final states. This includes leptonic and hadronic decays of the W boson. The performance
of weak supervision classification also experiences improvements with topological requirements
and is able to isolate the Wh process.

In addition, the guided weak supervision is tested on the production of the Higgs boson in
association with top-antitop quarks. Since the relative contribution of the top-antitop quark to
the total Higgs boson production is less than 1%, it becomes challenging to extract this signal
process. Most prominently, this is found to be the case for weak supervision. However, the test
is performed by requiring two topological characteristics, representing a fully hadronic (at least
two central jets) and semi-leptonic (at least one b-jets and one lepton) decays of top quark from
tt̄h process.

Table 2. Summary of the ROC integrals for VBF, Wh and tt̄h with different topological
requirements, compared to inclusive weak supervision learning.

Process Weak Supervision ROC Integral

VBF

0.804
0.951
0.881
0.912

Inclusive
Njets ≥ 2, ∆ηjj > 0, mjj > 1000 GeV
Njets ≥ 2, ∆ηjj > 0, mjj > 800 GeV
Njets ≥ 2, ∆ηjj > 0, mjj > 600 GeV
Njets ≥ 2, ∆ηjj > 0, mjj > 400 GeV 0.873

Wh
Inclusive 0.842
Hadronic 0.907
Leptonic 0.902

tt̄h
0.773
0.880

Inclusive
Nb−jets ≥ 1, Nleptons ≥ 1
Nb−jets ≥ 2 0.950
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6. Discussion and conclusions
Machine learning may play a significant role in the deeper exploration of the phase-space
available at the LHC. We introduce signatures and loose topological requirements before
the implementation of weak supervised training. The impact on the signal efficiency and
background rejection, in this approach, is evaluated for the different production mechanisms,
where significant improvements are observed with respect to the implementation of weak
supervision inclusively. This is referred to as guided weak supervision. While weak supervision,
as setup here, has the advantage of not relying on a model for the signal it is necessary to restrict
the phase-space where the sideband and the signal region are confronted with each other. While
signature and topological requirements are driven by physics considerations, the search is not
biased by the phenomenology of a model with a particular set of parameters.

The performance of the approach has been evaluated with the SM Higgs boson as a
benchmark. The signatures and topologies used here in principle can be used in the search for
heavier or lighter SM Higgs-like bosons. Provided that the topological requirements are loose
enough, these can be used for more generic searches of bosons. For instance, it is well motivated
to apply weak supervision in the presence of a b-tagged jet, while requiring a maximum amount
of jets in order to remove potential signals in association with top quarks. This can be extended
to other types of searches, such as search for resonances in multi-particle cascades.
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