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Abstract. Unlike supervised learning which is known to assume a full knowledge of the
underlying model, semi-supervised learning, weak supervision in particular allows with partial
knowledge to extract new information from data. The objective of this study is to set up
the search for heavy resonances at the electroweak scale with topological requirements. These
resonances could be produced with different production mechanisms. In this case we will be
focusing on the searches for new resonances in the Zγ final state using the Monte Carlo simulated
signal samples for 139 fb−1 of integrated luminosity for Run 2, collected at the LHC. The
weak supervised learning approach will be implemented, which will then be compared to the
performance of the full supervision approach.

1. Introduction
Large Hadron Collider (LHC) at CERN produces a very large amount of data, which is com-
putationally intensive and requires super-computing abilities to process. This data is generated
through proton-proton collisions, pp, at the ATLAS detector at high energies. The collisions
at the LHC produce particles which physicists have been studying in search for a new physics
beyond the Standard Model (BSM). For the probability of the BSM events to be produced, the
particles have to be accelerated at extremely high energy and high luminosity.

Machine learning (ML), deep learning, in particular, comes across as one of the tools to use
in this type of analysis because of its ability of handling complex and high dimensionality data.
The application of ML to high energy physics started in the 1990s, used for analysis and which
later developed into event identification and reconstruction in the 2010s [1]. There are quite a
number of ML algorithms which have been used in physics which include support vector ma-
chines, boosted decision trees, kernel density estimation and artificial neural networks.

For the longest time ML has been following two most commonly known learning paradigms,
namely, supervised and unsupervised learning. Supervised learning is known to assume full
knowledge of the model since it is trained on labelled data. On the other hand, in unsupervised
learning, the learning takes place without labels. The algorithm is expected to learn from itself
by finding similarities in the data and assigning them to the same output unit. Weak supervision
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Figure 1: Schematic representation of supervised learning.

in addition to these two, it is a new paradigm that allows extraction of information with partial
knowledge of the data.

The focus on this research is to search for resonances using H → Zγ in the final states in
predefined categories shown in Table 1 where H is a Higgs-like scalar. The purpose of this study
is to scan from 200 - 900 GeV to verify the ability of the proposed methodology, which will
further be used to prepare a search for new phenomena in high mass in Zγ final states at the
LHC. As this is an ongoing study, this paper will present and focus more on the mass point of
200 GeV.
The rest of this paper is organised as follows: Section 2 discusses the ML techniques, Section 3
presents data selection and data preprocessing, while Sections 4 and 5 concludes this work and
gives a brief discussion, respectively.

2. Machine Learning
This section gives a brief description of the methodology implemented in this study. Two
ML techniques in the form of full supervised learning and weak supervised learning have been
implemented and evaluated for the purpose of events classification. This is done to train the
algorithm to learn what the signal and background events look like. These techniques have been
implemented in conjunction with deep neural networks (DNNs) [2].

2.1. Full Supervised Learning
Full supervised classification is one of the most popular learning paradigms of ML. The name
dictates that the dataset should come with labels. Each example x~i comes with a label yi ∈ {0, 1}
in a case of binary classification task. Figure 1 shows a schematic representation of full steps
involved in supervised learning. The purpose of this approach is to learn a mapping from x
to y while minimising the loss function (see equation 2) which can be in a form of binary
cross-entropy:

(1)`(y, ŷ) = −y · log ŷ + (1− y) · log(1− ŷ),

where ŷ is the model output and y is the target output. The loss function is given by [3]:

ffull = argminf :Rn→[0,1]

N∑
i=1

`(yi, ŷi), (2)

where f is the predictor function, ŷi is the ith model output, yi is the corresponding target output
and ` is the loss for a single example [4]. For this task, the training data contains labelled signal
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Table 1: Yield for the considered processes normalised to the expected events yields and signal
injection rates for VBF, ggH, ZH and WH signal samples for 139 fb−1 of integrated luminosity
for Run 2.

Process Selection Sideband Region Signal Region Signal

ggH Inclusive 13175 6444 160
ZH & WH METsig > 2.5 GeV 808 394 40
ZH & WH Njets ≥ 2 GeV; 60 < mjj < 120 GeV 839 414 40
VBF Njets ≥ 2 GeV; ∆ηjj > 2 GeV; mjj > 300 GeV 498 245 30

and background events, with 1 and 0 used as the labels, respectively. This is done to ensure
that the algorithm is able to generalize on an unseen data to make predictions. This learning
paradigm requires a large amount of labelled data, especially when applied on a deep learning
algorithm.

2.2. Weak Supervised Learning
Unlike supervised learning, semi-supervised learning, weak supervision in particular allows with
partial knowledge to extract new information from the data. This is different from supervised
learning which is known to assume a full knowledge of the underlying model. Weak supervised
learning is less expensive compared to supervised learning since it takes less time manually
labelling the data. Weak supervised learning enables the model to learn from data with
imprecise labels [5], it is for this reason that it is regarded as cheap form of supervision [6, 7].
These benefits sparked a lot of interest from researchers in high energy physics [3]. The most
commonly known types of weak supervision come in three ways, namely, incomplete, inexact, and
inaccurate supervision [8]. The names are self-explanatory, i.e. incomplete supervision comes
with incomplete labels, inaccurate supervision with inaccurate labels and inexact supervision
for coarse-grained labels [8].

3. Data Selection and Preparation
This work explores the separation power of weak supervision technique in comparison with
full supervision. The performance of these two techniques will be tested on ATLAS Monte
Carlo samples. This corresponds to simulated non-resonant Zγ dataset, as it is the dominant
background, representing more than 90% of the total background. The signal in this research
represents the simulated Higgs-like to Zγ final state [9]. Data preprocessing plays a fundamental
role in ML and has a significant influence on the performance of ML methods [10, 11, 12]. The
data is normally scaled to the intervals of [0, 1] and [−1, 1] to ensure that features have the same
degree of influence [13]. This ensures that the values use a common scale however, the difference
in the ranges is not distorted. For this study MinMax scaler was used to normalize the data.
MinMax scaler is defined by:

x′i =
xi −min(x)

max(x)−min(x)
(3)

where xi is the ith entry/record for the variable x, x′i is the rescaled entry, whereas min(x) and
max(x) represent the minimum and maximum entries, respectively. Table 1 shows the number
of expected events yields for both sideband and signal region for all predefined categories for
this mass point. The width of the Zγ invariant mass for the sideband region is defined as 12%
of center mass of the resonance Higgs-like signal while the signal region is 6%. Different signal
production mechanisms (WH, ZH, ggH and VBF) were injected, these injected numbers are
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Table 2: Maximum significance for different background rejections from the weak supervised
learning DNN response distribution.

Category Max Significance Background Rejection (%)

1.97 0
3.65 99
2.87 99
1.91 30

Inclusive
METsig > 2.5 GeV; ZH
METsig > 2.5 GeV; WH
Njets ≥ 2 GeV; 60 < mjj < 120 GeV; ZH
Njets ≥ 2; 60 < mjj < 120 GeV; WH 1.88 0
Njets ≥ 2 GeV; ∆ηjj > 2 GeV; mjj > 300 GeV 2.31 90

defined by 2σ, where σ is the statistical uncertainty of the background in the signal region, given
by:

σ =
√
BMW (4)

where BMW represents the number of background events in the mass window region. The
signal region for this mass is defined as 194 < m``γ < 206 GeV whereas the sideband is between
182 < m``γ < 194 GeV and 206 < m``γ < 218 GeV.

Throughout this research, background events in the sideband region will be represented by
sample 1. Sample 2 is made up of the background and the signal in the mass window region.

4. Results
A python API, Keras library with Tensorflow backend [14] was used for DNNs configurations.
DNNs with four hidden layers of 200 nodes each and a single output node have been configured
and implemented for this study. All of the hidden layers of the DNN used ReLu for an activation
function and a sigmoid for the output layer. The input layer consists of 17 neurons, representing
the kinematic features of the dataset. The separation power of the two techniques in conjunction
with DNNs was evaluated using an ROC curve (receiver operating characteristic curve). Figure
2 shows the ROC curves for all the predefined categories with their respective signal injection.
The performance in this case is measured by the area under the curve (AUC). Figure 3 (a)
shows the DNN distribution plot from the weak supervised learning model when tested with
pure signal and background. This is the selected plot for the VBF (Njets ≥ 2 GeV, ∆ηjj > 2
GeV, mjj > 300 GeV) category. This response distribution was further used to calculate the
significance based on background rejection using the following equation:

significance =
S√
S +B

(5)

where S is the number of signal events and B is the number of background events. Significance
in this case can be regarded as the maximum ratio of signal to noise that is produced by the DNN
classifier. The results of this significance are shown in Figure 3(b). The maximum significance
together with the background rejection in terms of percentages are recorded in Table 2 for all
categories. The two categories, inclusive and Njets ≥ 2 GeV; 60 < mjj < 120 GeV, WH show
to have a maximum significant at 0% background and this is due to having no clear separation
between background and signal.

5. Discussion and Conclusion
In this study, we proposed the search for new resonances beyond the standard model using
machine learning techniques, weak supervision and full supervision in particular. These learning
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Figure 2: ROC curves showing weak supervising learning and full supervised learning results.
Training and testing represent results for sample 1 and sample 2: (a) Inclusive, (b) Njets ≥ 2
GeV, ∆ηjj > 2 GeV, mjj > 300 GeV, (c) METsig > 2.5 GeV, WH and Njets ≥ 2 GeV,
60 < mjj < 120 GeV, ZH.
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Figure 3: The two plots show the results for the VBF (Njets ≥ 2 GeV, ∆ηjj > 2 GeV ,
mjj > 300 GeV) category: (a) DNN response distribution for the weak supervised learning
model, (b) significance calculated based on background rejection from the response distribution.
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paradigms were used in conjunction with deep neural networks algorithm. The search was done
in the Zγ final state. The performance of the full supervision approach was compared to weak
supervision. ROC curves were used as an evaluation metric to compare the two approaches.
Based on this, it can be seen that the performance of weak supervision is reasonable and depends
on the event configuration (see Figure 2) in comparison to full supervision for all categories. This
is in agreement with the study carried out on the mass point of 105 GeV [2]. The study is used
to setup for search for new phenomena in high-mass final states for the LHC.
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